منابع مشابه
Prevalence of Non-lipschitz Anosov Foliations
We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems and give open dense sets of codimension one systems where this regularity is not exceeded as well as open dense sets of symplectic, geodesic, and codimension one systems where the analogous regularity results of [PSW] are optimal. We produce open sets of symplectic Anosov diffeomorphisms and flows with...
متن کاملPseudo-anosov Foliations on Periodic Surfaces
In this note we shall study the lifts of stable foliations of pseudo-Anosov diffeomorphism to certain infinite abelian covers. This is motivated, at least in part, by recent progress in understanding the ergodic properties of the analogous horocycle flows on infinite surfaces [3],[13]. Our aim is to show that many of the results from that context hold in this natural and technically simpler set...
متن کاملMaximal Representations of Surface Groups: Symplectic Anosov Structures
Let G be a connected semisimple Lie group such that the associated symmetric space X is Hermitian and let Γg be the fundamental group of a compact orientable surface of genus g ≥ 2. We survey the study of maximal representations of Γg into G that is the subset of Hom(Γg, G) which is a union of components characterized by the maximality of the Toledo invariant ([16] and [14]). Then we concentrat...
متن کاملcompactifications and representations of transformation semigroups
this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...
15 صفحه اولOn Representations of Certain Pseudo-anosov Maps of Riemann Surfaces with Punctures
Let S be a Riemann surface of type (p, n) with 3p + n > 4 and n ≥ 1. Let α1, α2 ⊂ S be two simple closed geodesics such that {α1, α2} fills S. It was shown by Thurston that most maps obtained through Dehn twists along α1 and α2 are pseudo-Anosov. Let a be a puncture. In this paper, we study the family F(S, a) of pseudo-Anosov maps on S that projects to the trivial map as a is filled in, and sho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l’institut Fourier
سال: 1992
ISSN: 0373-0956
DOI: 10.5802/aif.1316